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Adversity, adiposity, nutrition and metabolic 
well-being in multi-ethnic Asia
 

Theresia H. Mina    1  , Pritesh R. Jain1, Nita G. Forouhi    2 & 
John C. Chambers    1,3,4 

Obesity, diabetes and cardiovascular disease are rising rapidly in Asia. 
Population-based data consistently show that Asians are at higher risk 
for these non-communicable diseases than their European counterparts, 
especially when living in urban and migrant settings. Contrary to initial 
hypotheses, genetic susceptibility factors only partially explain globally 
divergent health outcomes. In this Perspective, we discuss potential 
additional mechanisms to explain this divergence. We review the global 
disparities in the cardiometabolic disease burden and the role of genetic 
variation. We then summarize potential pathways linking prenatal and 
postnatal adversity with unfavourable nutrition, increased adiposity and 
altered metabolic well-being in Asian populations. In parallel, molecular 
epidemiological studies are providing insights into how life-course 
exposures and environmental adversity intersect with adverse nutrition to 
establish the functional genomic changes that may drive cardiometabolic 
risk in global Asian populations. We highlight opportunities in precision 
health studies to advance Asian health through the identification of 
underlying aetiology critical to the development of effective interventions 
to promote and maintain metabolic health in current and future generations 
of Asian individuals worldwide.

Over the past three decades, the global distribution of type 2 diabe-
tes (T2D), hypercholesterolaemia, hypertension and cardiovascular 
disease (CVD) has been progressively moving towards the emerging 
market economies of the Asia-Pacific region1–3. The countries of the 
East, South and Southeast Asia regions (the UN definition of Asian 
subregions defines ‘East Asian’ as Chinese and other East Asian, ‘South 
Asian’ as Indian and other South Asian, and ‘Southeast Asian’ as Malay 
and other Southeast Asian ethnic groups) are now home to 296 million 
people living with diabetes4, and this number is predicted to increase 
to 412 million by 2045 (ref. 5). Mean levels of blood pressure and total 
cholesterol in the population have also been rising2. In keeping with 
this, the contribution of CVD to annual mortality in Asia has grown 
from 20% in 1990 to 45% in 2021 (ref. 6). These figures contrast the 
improvements in cardiovascular risk and falling rates of CVD observed 
in Europe over the same period7 (Fig. 1a).

Global disparities in the cardiometabolic disease 
burden
Compared to Europeans, East and South Asian individuals appear to 
develop T2D at lower body mass index (BMI) levels8, with weight gain 
promoting greater adverse metabolic responses in South Asian com-
pared to European men9. There are few comparable data for Malaysia, 
Indonesia or other Southeast Asian countries. Contemporary popula-
tion studies also show striking differences in metabolic risk between 
the Asian ethnic groups, even when living in a common environment. 
CVD mortality appears highest in East Asians (Fig. 1a). By contrast, 
there is a threefold higher prevalence of T2D among people of South 
Asian and Southeast Asian ethnicity backgrounds compared to East 
Asian people when they live side by side in the city state of Singapore10, 
as well as in Malaysia11. The prevalence of prediabetes is also elevated 
among Southeast and South Asian compared to East Asian migrants 
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Genetic variation and the increased 
cardiometabolic risk in Asia
The presence of systematic differences in metabolic outcomes for 
Asian people, which are evident in diverse environmental settings, has 
underpinned the hypothesis that there may be genetically determined 
differences in susceptibility to diabetes, possibly reflecting adaptation 
to historic environmental pressures. This includes the classic ‘thrifty 
gene’ hypothesis19, which suggests selection for genomic variation that 
enables survival through periods of low food abundance. Although an 
intriguing concept, such thrifty genes have proved elusive. Large-scale 
genetic association studies have identified thousands of common and 
rare variants that contribute to adiposity, CVD and diabetes and to 
their related endophenotypes20–22. However, the genetic susceptibil-
ity factors identified are typically cosmopolitan and shared across 
populations. For example, the most recent trans-ethnic T2D genome- 
wide association study (GWAS) study identified 1,289 genetic loci asso-
ciated with disease, of which just six appear to be specific to Asian 
ancestries, and with none being specific to South Asian ancestries23. 
Furthermore, these cosmopolitan genetic variants show no evidence 
for a systematic increase in effect allele frequency, effect size or effect 
allele frequency weighted by effect size for T2D among Asian ancestries 
compared to European ancestries, or between Asian ethnic groups23–25.

Polygenic risk scores (PRSs) are an alternative approach to inclu-
sion of both common and rare genetic variants, into a summative 

living in the USA12 and Canada13. Southeast and South Asian individu-
als living in Asia or abroad also have raised adiposity, blood pressure 
and cholesterol levels, compared with East Asian people10,11 (Fig. 1b). 
The increasing disease burden in Asia over the past three decades con-
trasts starkly with falling incidence for diabetes and CVD in the USA 
and Europe (Fig. 1d).

Rising adiposity has been most marked among Asian people living 
in urban and migrant settings, but is now evident, and transforming 
health outcomes, in traditionally rural regions14. Excess adiposity 
in visceral deposits appears to have a particularly important role in 
cardiometabolic risk. Visceral adiposity is causally linked to insulin 
resistance, atherogenic dyslipidaemia, adipocytokine activation  
and the development of diabetes and atherosclerosis15. Visceral  
adiposity levels increased in all regions of the world over the past two 
decades16, and increased visceral adiposity has made a major contribu-
tion to the secular changes in global cardiometabolic risk17. Anthro-
pometric and imaging studies, including dual X-ray absorptiometry10 
and computed tomography18 analyses, show a predisposition to vis-
ceral fat deposition in Asian populations, with evidence for higher  
total and visceral fat composition compared to Europeans at similar 
BMIs. Excess visceral fat in Asian populations closely parallels their 
increased prevalence of diabetes and related metabolic disturbances10 
(Fig. 1b,c). Excess adiposity explains an important fraction of the diver-
gent metabolic health outcomes between Asian groups8.
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Fig. 1 | An overview of the global and regional disparity in the cardiometabolic 
health burden. a, The global and regional proportion of mortality of CVD 
to mortality of all causes from 1990 to 2021. The 2020 and 2021 data include 
the COVID-19 pandemic, which may affect CVD mortality estimates6,40. b, The 
comparison of overall and visceral adiposity across individuals of Asian versus 
European ancestries in the UK (UK Biobank-approved research ID 43769). 
BMI and visceral fat mass index (vFMI) are expressed in kg/m2, and waist 
circumference is in centimetres. Data shown as mean (95% confidence interval, 
CI). c, A comparison of representative metabolic and adiposity parameters 
across Chinese, Indian and Malay individuals living in shared environments in 
Singapore as part of the PRECISE-SG100K study10, and the partial contribution of 
adiposity on the elevated burden of glucose dysregulation in Indian individuals. 
I vs C., Indian versus Chinese; M vs C, Malay versus Chinese, expressed as mean 

difference (95% CI). d, The longitudinal trend of urbanization and disease burden 
in representative Asian countries, compared with Europe. The urbanization 
dataset was downloaded from the European Commission41 and Our World in 
Data. The global disease burden dataset was obtained from Our World in Data42 
and the Institute for Health Metrics and Evaluation40. ‘Europe’ is based on  
the World Health Organization definition across datasets. Communicable 
diseases include communicable, maternal, neonatal and nutritional diseases. 
The urbanization reflects domestic migration; the dataset excludes emigration 
that resulted in the global Asian diaspora. EMM, estimated marginal means;  
Gluc, fasting glucose; HOMA-IR, homeostatic model assessment for insulin 
resistance; SA, South Asia; SEA, Southeast Asia. vFMI was quantified by dual  
X-ray absorptiometry whole-body scan. Panel c adapted with permission from 
ref. 10, Elsevier.
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measure of genetic risk in individuals and populations. PRSs derived 
from multi-ancestry data provide superior disease prediction than  
models based on a single ancestry26. Emergent data show that trans- 
ethnic PRSs for diabetes predict diabetes risk similarly in non-African 
global ancestral groups, including European, South Asian and East 
Asian populations27. PRSs for T2D also do not differ systematically 
between Asian ethnic subgroups, despite their documented variation 
in diabetes prevalence28. Based on observed values for PRSs, and their 
associated risk ratios, the differences in genetic background do not 
explain more than a small fraction of the difference in disease burden 
between Asians and Europeans25,28 (Fig. 2), or between Asian ethnic 
groups (Fig. 2d). Interestingly, partitioning of polygenic risk into 
components does suggest greater genetic predisposition towards 
lipodystrophy in East Asians24, and lipodystrophy and β-cell insuf-
ficiency in South Asians, as pathways to T2D at lower BMI29. Thus, 
although genetic variation is an important determinant of T2D risk 
within each population group, our observations argue against genetic 
variation as a strong determinant of the major differences in risk 
between populations.

An important limitation of this Perspective is that current genome 
sequencing programmes relying on short-read sequencing may be 
inaccurate in complex regions such as repetitive DNA sequence and 
structural variation30. It does remain possible that this ‘dark genome’, 
the section of the genome that is not well assessed by short-reading 
sequencing, might also contain previously uncharacterized genes, 
gene variants of regulatory features that are both common and of 
high effect size. Long-read sequencing programmes of large-scale 

population samples are in progress in the USA, UK and Asia, and may 
provide useful insights on this key question30–32.

Adverse diet underpins metabolic dysregulation 
in Asians
The rapid changes in population health currently observed in Asian 
communities highlight a key role for modifiable environmental and 
behavioural exposures as determinants of the rising burden of chronic 
disease. This view is supported by data from the Global Burden of  
Disease 2021 study (GBD-2021)33 that identify dietary risk factors 
as the single greatest behavioural risk factor group for CVD and  
diabetes in East, South and Southeast Asia (Fig. 3a,b), and in contrast 
to the primary contribution of cigarette smoking to CVD in Europe-
ans. Regional differences are also apparent (Fig. 3c). In East Asia, diets 
high in sodium are the largest dietary risk factor for CVD (226.1 ver-
sus 2.3 disability-adjusted life years (DALYs) for high processed meat 
consumption; Fig. 3c), reflecting the widespread use of soy sauce in  
Chinese, Japanese and Korean cuisines. However, the greatest dietary 
risk factor contributing to CVD DALYs in Southeast Asia was the low 
consumption of fibre (343.4 DALYs; Fig. 3c), and in South Asia it was 
the low consumption of fruits (403.8 DALYs; Fig. 3c).

The nuances of Asian traditional dietary practices were often  
lost in the global statistics: the Asia-Pacific region is home to very 
high diversity of traditional dietary practices, which emphasize high 
consumption of grains and their fermented products, soy-based or fer-
mented soy proteins such as tofu and tempeh, locally sourced vegeta-
bles and fruits, low intake of red meat, coarse sugar, slow cooking and 
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an incorporation of spice mixtures in both foods and beverages34–38. 
Traditional Asian dietary practices in fact incorporate the ‘food as  
medicine’ concept, historically intertwined with traditional medi-
cine practices, including traditional Chinese medicine, Jamu and 
Ayurveda34–38. Higher consumption of traditional dietary patterns are 
associated with reduced obesity and a lower incidence of ischaemic 
heart diseases39. However, traditional dietary habits are becoming 
harder to study as they are being transformed by the rapid urbaniza-
tion of Asia, accompanied by altered patterns of physical activity40–42 
(Fig. 1d). Global comparisons on the effect of specific dietary compo-
nents on cardiometabolic health remain rare43, with the findings often 
obscured by the collinearity between dietary habit and socio-economic 
deprivation44. Amid the broader reflection in nutrition research45, 
we call for more dietary investigations in Asia-Pacific to address the 
regional paucity of evidence and to advance our understanding of 
how dietary risk factors contribute to metabolic dysregulation 
in Asia-Pacific.

Emergent questions for diet and metabolic health 
in Asia
Defining Asian-specific dietary health
One of the major challenges for global dietary data analysis is accurately 
quantifying diverse, culturally specific dietary practices. For example, 
the favourable dietary quality among South Asians as measured by  
the Alternative Healthy Eating Index (aHEI) in the Global Dietary Data-
base report46 contrasts with the high burden of T2D in this population. 
Established European-derived, a priori indices such as the aHEI may  
not fully capture the dietary variations that are common in the South-
east and South Asia; for instance, the Japanese population has high 
consumption of both fish and sodium, items considered as healthy 
and unhealthy, respectively, in the aHEI, in part reflecting the use  
of soy sauce for preparation and consumption of seafood in the  
region47. However, the validity and reproducibility of data-driven, 
a posteriori dietary patterns derived using methods such as clustering 

or factor analysis remained limited, owing to a lack of standardization 
in the types of dietary parameters included in the statistical model, 
choices of statistical models and criteria for evaluating validity and 
reproducibility48. This raises a critical question: how can current 
dietary assessment frameworks better account for regional dietary 
practices while retaining the robustness and validity required for global 
comparison? There is a need to develop high-quality dietary assess-
ment frameworks that are both hypothesis driven and data driven, 
supported by both biological validations and prospective health out-
comes, which incorporate Asian ingredients, cooking methods and 
consumption patterns.

Contribution of UPFs to health in Asia
Observational studies49,50 have linked the consumption of ultra- 
processed foods (UPFs) with adverse health outcomes, including raised 
risk of T2D, CVD and mortality. This is further confirmed by a recent 
meta-analysis showing associations of increased UPF consumption with 
higher CVD risk51. The consumption of UPFs has also increased globally, 
especially in the emerging economic regions52, albeit with regional 
variations. Between 2006 and 2024, the UPF sales per capita in East Asia 
and South and Southeast Asia have risen from 24 kg to 39 kg (~38%) and 
4 kg to 11 kg (~125%), respectively, compared to a ~9% increase in North 
America52. The surge in UPF consumption is also in line with Fig. 1d. 
South and Southeast Asia also have the highest consumption of palm 
oil per capita (60% of total oil sales); palm oil contributes up to ~70% of 
the total ingredients in ‘supermarket’ UPFs52. Notably, Asia has had low 
uptake of Western-oriented, supermarket UPFs such as breakfast cere-
als, baked goods, spreads and carbonated soft drinks, and instead had 
the highest sales of ready-to-drink tea, coffee and other Asian specialty 
drinks52. This observation implies that the high palm oil consumption in 
Asia might have originated from unaccounted informal food sources, 
including street foods and other food-away-from-the-home sources 
that are affordable and convenient, contain suboptimal nutrition53 
and remain understudied in the Western literature.
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To date, few studies have examined the consumption of UPFs and 
links to adverse health outcomes in Asia54, and there is little informa-
tion to assess how Asian meals and street foods fit international food  
classification systems such as NOVA (Portuguese term ‘nova clas-
sificação’ means ‘new classification’), proposed originally in Brazil 
and adopted in most research on UPFs to date55. The consumption of  
UPFs is also determined by the food environment, such as the density 
of food outlets; a recent South Asia Biobank study revealed the adverse 
effectof supermarket density on obesity56. A scoping review of 45  
studies also demonstrated that eating behaviours in Southeast Asia 
were also driven by social, cultural and economic factors57. There is an 
urgent need to improve the understanding of Asian-specific dietary 
patterns and food group consumption, and the underlying eating 
behaviours, to unravel the relationships of these dietary exposures with 
the elevated cardiometabolic health burden in the Asia-Pacific region.

Food insecurity and poor dietary quality: two sides of the  
same coin
Food insecurity according to the Food and Agriculture Organization 
(FAO) is defined as “a lack of regular access to enough safe and nutritious 
food for normal growth and development and an active and healthy 
life”, which may be due to the “unavailability of food and/or lack of 
resources to obtain food”, with severity measured by the Food Insecurity  
Experience Scale Survey Module58,59. In 2022, Asia replaced Africa as  
the largest regional contributor to the global statistics of food insecu-
rity, accounting for 55% (402 million) of undernourished individuals53.  
Major contributors to food insecurity in low- and middle-income coun-
tries (LMICs) include conflicts, economic pressures (including the 
recent effects from the COVID-19 pandemic) and weather extremes60. 
Even after accounting for the war in Ukraine in 2022, the Asia-Pacific 
region still accounts for 40% of global internal displacement59, with 
South Asia reporting the greatest numbers of internally displaced 
people by natural disasters. Food insecurity driven mainly by economic 
shocks affects 83.9 million people globally60. Asia is now the highest 
contributor to the global statistics of people who are unable to afford 
a healthy diet53 (Fig. 4a). The presence of food insecurity is highly per-
vasive, and evident even in stable, high-income settings. For example, 
despite being ranked as the most food-secure nation on the 2019 Global 
Food Security Index, an estimated 10% of Singaporean households 
experienced food insecurity at least once in the past year, especially 
among the minority ethnic Malay and Indian subpopulations61.

The anticipated outcomes from severe food insecurity include 
an increased risk of malnutrition, driven by smaller portions, skip-
ping meals and reduced overall food consumption. In other contexts, 
food insecurity can also lead to prioritization of energy-dense food 
sources such as UPFs, based on affordability rather than nutritional 
content. Affordability is a critical factor in determining food choices 
in food-insecure environments (Fig. 4b)61 and globally remains the 
most studied food environment factor62. Food banks are known to 

have poor nutritional quality63,64, and accessing food banks is associ-
ated with increased UPF consumption64. With increasing cost of living, 
food charities prioritized non-perishable items owing to budgetary 
constraints65 and free meal programmes often serve energy-dense 
food owing to logistical limitation66,67. UPF consumption is also 
favoured by low-income consumers in India and Vietnam52. A recent 
meta-analysis demonstrates the association of food insecurity with 
1.5 times higher likelihood of obesity68; food insecurity is also a risk 
factor for CVD outcomes69.

Food insecurity is thus increasingly recognized as a risk factor  
for excess adiposity, and adverse cardiometabolic risk. The prevalence 
of food insecurity mirrors the latest prevalence of the underweight 
and obesity double burden in 2022; India, China and Indonesia are 
among the countries with the largest number of underweight adults 
globally in 2022, and paradoxically the three Asian giants also have the 
highest absolute number of adults with obesity70. Besides obesity, it is 
also associated with a higher risk for symptoms of depression61,71, with 
greater odds in older individuals and in male individuals, potentially 
leading to a vicious cycle of poor physical and mental health. Food 
insecurity thus emerges as an important determinant of both physical 
and mental health, and a potential contributor to the global disparities 
in chronic disease burden in LMIC settings.

Early-life nutritional adversity and adverse health outcomes
Although low birth weight (LBW, defined as <2.5 kg) has decreased in 
the past two decades, South Asia still reports a high global prevalence 
of LBW (26.4% in 2015), whereas Southeast Asia has the third-highest 
LBW prevalence at 12.2%72. Adults born with LBW are at increased risk 
for developing chronic diseases in later life73. Risks of T2D are increased 
among South Asians with a history of LBW, implying that fetal growth 
retardation may adversely affect metabolic regulation74. Observations 
that LBW is more common in LMIC settings, and predicts adverse meta-
bolic outcomes, provides a transgenerational mechanism by which food 
insecurity in parents might affect the health of their offspring. Future 
research is required to unravel the independent effects of transgen-
erational programming from other postnatal environmental factors.

Early-life exposures to nutrient scarcity promote maladaptive 
development of pancreatic β-cell mass, leading defective insulin action 
and glucose intolerance in later life19,75. South Asian infants who were 
born small for gestational age also have reduced lean tissues and excess 
visceral fat deposition, compared with European infants76. Genetic vari-
ants influencing birth weight are causally linked with variants predict-
ing glycaemic and cardiovascular traits (genetic correlation ~0.4)77. The 
variants for birth weight cluster with genes implicated with T2D, NT5C2 
(for coronary artery disease and blood pressure) and ADRB1 (for blood 
pressure), glucose homeostasis and insulin signalling77.

However, the associations with PRS for LBW are similar in both 
infants of South Asian and European ancestries, indicating a comple-
mentary role for other epigenetic and environmental factors such as 
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intrauterine and postnatal nutritional environment78. The prevalence 
of hyperglycaemia in pregnancy, a marker for gestational diabetes mel-
litus (GDM), in South Asia was the highest globally (28.0% in 2021, com-
pared with 12.4% in East Asian and Southeast Asian countries and 12.2% 
in Europe)4. In contrast to LBW, GDM increases birth weight and the  
risk of macrosomia (Fig. 5). Infants with macrosomia are also predis-
posed to future obesity79 and T2D77. Adverse intrauterine effects of  
GDM on the offspring provide a further potential mechanism by 
which dietary adversity, obesity and T2D in adults may drive adverse 
metabolic health in subsequent generations (Fig. 5). Both LBW 
and GDM form the rapidly merging cycles of undernutrition and 
overnutrition76, contributing to the double burden of malnutrition in 
the Asia-Pacific region70.

Life-course exposures and environmental adversity shape 
metabolic pathways
The data presented above show that adversity and suboptimal nutrition 
may be experienced at multiple phases of the life course, and affect 

metabolic health in later life (Fig. 5). Molecular phenotyping stud-
ies also provide evidence of the genomic disturbances that may link 
unfavourable diet, metabolic dysregulation and the development of  
cardiometabolic disease in adults. Epigenome-wide profiling of 
genomic DNA reveals the presence of disturbed methylation at multiple 
sites that are associated with UPF consumption and other unfavour-
able dietary patterns80, which precede and predict the development  
of T2D81,82 and CVD83,84. Obesity, insulin resistance and T2D are each 
closely associated with perturbed methylation of ABCG1, which  
is involved in inflammatory responses to adiposity, efferocytosis  
(clearance of apoptotic cellular debris by macrophages or other  
phagocytes), cholesterol and phospholipid transport and insulin 
secretion81,82. Dysregulated methylation of ABCG1 is also associated with 
circulating high-density lipoprotein cholesterol and triglycerides85.

Mendelian randomization using suitable genetic instruments 
(to investigate the causality between the exposure and outcome, 
with less influence by confounding and reverse causation, as genetic 
variants are assigned randomly at conception) supports the view that 

!
!

!

!

Glucose
intolerance

Accumulated defect over time
Dysregulated
adipocytes

Catch-up growth,
assuming no stunting

Modulation by
breastfeeding

Large for 
gestational age

Paediatric
obesity

Suboptimal organ
growth and
functionalities

Prenatal exposure Adverse postnatal development Metabolic syndrome in adulthood

Dietary exposure

Stress, trauma

Small for 
gestational age
or preterm birth

DHCR24d, PPLd, 
TFAP4a, ZNF500d

Maternal paediatrics index
(Küpers et al. 2022)

eWAS in paediatrics
(methylation as exposure)

eWAS in neonatal blood
(methylation as outcome)

AKNRD11, ARID5Bac, 
DHCR24ab, KLF9a,
MAP4K2a, MFSD10a,
PACS2ab, PEBP4a,
PTPN6, SEMA4Ca,
SPON2a, TEF, TIGD5
UHRF1ab, XRCC3a

Birth weight
(Engel et al. 2014, Küpers et al. 2019)

ABATab, CYFIP1ab, DTX1ab,
MAP1LC3Ab, SEXN5, 
SFRP5ab, SLC43A2ab,
SNORDb, ZNF35b

BMI in paediatrics
(Vehmeijer et al. 2022)

ACTL10, AGRNa, 
GBAP1a, 
LINC01622,
LOC285768a, 
NECAB3,
PRSS21, SFRP1a,
SP6a, UCN

Maternal BMI
(Sharp et al. 2017)

C17orf87, 
LINC01342, 
SYNJC2ab, 
ZFPM1a

Maternal GDM
(Howe et al. 2020)

ADAM8a, AKT1a, ALKB3, APTX, ARL4D, CAMPa, CUX1a, DAXXa, KIAA0182a, 
MUMa, MYD88, PBX1a, PDE8Ba, RASIP1a, SDCCAG8a, SOX2OTa, 
UHRF1ab, VCANa, ZC3H7Aa, ZN575a

Maternal anxiety, antidepressaants, depression, stress
(Cardenas 2021, Sammalahti et al. 2021, Sharma et al. 2022, Ruehlmann et al. 2023)

PCDHG,
PCED1Ba

Maternal 
glycaemic index
(Küpers et al. 2022)

Also reported in eWAS catalogue for aT2D,
badult BMI and  cother cardiovascular traits
in adults as exposure or outcome.

GGTA G A C T

GGTA G A C T

GGTA G A C T

GGTA G A C T

Cortisol

GGTA G A C T

!

!

!

O

OH
HO

H

H

H

HO
O

ACOT11d, ADIPOR2d, AKT3d, DOC2Bd,
FABP3d, IRS2d, KIF5Cd, KLF6d, NRN1d,
NRXN3d, PLIN5d, PRKD2d, RBP4d, 
SEMA4Bd, SEMA6Bd, SLCC2A3d, 
SOCS3d, TULP3d

Obesity (McAllan et al. 2023)

ABCG1d, ANXA1d, BBS2d, FTH1P20d,
HOXA5d, KLHL18d, LGALS3BPd, 
MAP3K2d, NFKBd, PHGDHd, SELM, 
SH2B1d, TNFRSF4d

BMI (Wahl et al. 2017)

ABCG1d, DHCR24d, MSMO1d, 
OLMALINCd, PH0SPH01d, SOCS3d, 
SREBF1d, TXNIPd 

T2D (Chambers et al. 2015, Jain et al. 2025)

eWAS in adulthood
(methylation as exposure)

Also reported in eWAS catalogue for dprenatal exposure e.g., maternal BMI, diet, education,
glycaemic indices, smoking; birth outcomes e.g., gestational age, birth weight, 
pre-eclampsia, preterm birth; paediatric outcomes, e.g., ADHD, child abuse.

Fig. 5 | The effect of adverse prenatal and postnatal environmental exposure 
on disease susceptibility across the ages. Prenatal exposure might include 
suboptimal dietary exposure or adversity, leading to accumulated epigenetic 
modifications across life stages. To illustrate this, we shortlisted exemplary 
epigenome-wide association studies (eWAS) with n > 1,000, which investigated 
epigenetic markers as consequences at birth and in childhood, and as exposure 
in adulthood. We included key genes in eWAS of neonatal cord blood or saliva 
following exposure to maternal metabolic health such as BMI98, dietary 
glycaemic index99, GDM100 or to psychological symptoms101–104. In childhood, 
we used eWAS of adipocytes following exposure to maternal glycaemic load99, 

and eWAS of paediatric BMI105. In adulthood, we considered eWAS on blood for 
BMI106 and T2D81,107 as outcomes, and eWAS on adipocytes of individuals with 
obesity108. UHRF1, SOCS3, SREBF1 and ABCG1 appear more than once across study 
or phenotype; DHCR24 appears across time periods. Most genes in neonatal and 
paediatric eWAS were also linked with T2D, adult BMI and other cardiovascular 
traits in the eWAS catalogue (https://www.ewascatalog.org/). Similarly, most 
genes in adulthood eWAS were also linked with ≥1 prenatal exposure, birth or 
paediatric health outcomes. ADHD, attention-deficit/hyperactivity disorder. 
Created in BioRender. Chambers, J. (2025) https://BioRender.com/e46cxcq.

http://www.nature.com/natmetab
https://www.ewascatalog.org/
https://BioRender.com/e46cxcq


Nature Metabolism | Volume 8 | January 2026 | 16–26 22

Perspective https://doi.org/10.1038/s42255-025-01441-4

genomic regulatory features may be causally linked to the respective 
cardiometabolic traits, at some loci83,86. The identified disturbances 
in regulatory DNA methylation are closely linked to unfavourable 
dietary patterns, including lower aHEI scores80, higher glycaemic 
load87 or lower polyunsaturated fatty acids88. Critically, and in contrast  
to DNA sequence variation information, the genomic regulatory  
disturbances also identify and largely explain the difference in meta
bolic risk between populations81,89. Intriguingly, the methylation  
markers identify nuclear regulatory pathways involved in key inflam-
matory and metabolic pathways, including SEL1L (implicated in fibro-
blast growth factor-21)80 and CDCA7L88, providing plausible biological  
pathways linking food insecurity, poor diet quality and visceral  
adiposity to metabolic dysregulation.

Early-life exposure to stressful events or psychological insults may 
lead to aberrant programming of the hypothalamic–pituitary–adrenal 
axis in the offspring90–92. Pro-inflammatory markers are known to be 
elevated in adults with a history of childhood trauma93. Adverse changes 
in cardiometabolic traits and pro-inflammation following the dysregu-
lation of 11β-hydroxysteroid dehydrogenases (11β-HSD, cortisol recep-
tors) across tissue types have been reported in animal models in vivo94,95. 
Aberrant levels of placental 11β-HSD2, which regulates maternal–fetal 
transport of glucocorticoids, have been proposed as plausible markers 
for adverse programming in utero96,97 (Fig. 5). Figure 5 compares the 
epigenetic markers observed in neonatal cord blood and saliva98–104, 
or in childhood99,105, following exposure to maternal metabolic or 
psychological symptoms with those observed in the epigenome- 
wide association studies of obesity and T2D in adulthood81,106–108.

Glucocorticoid administration during preterm birth also increases 
the likelihood of adverse cardiometabolic symptoms in later life, 
including increased abdominal and subcutaneous fat distribution, 
raised blood pressure and insulin resistance109,110 (Fig. 5). The rate of 
preterm birth remains disproportionately high in South Asia at 13.2  
per 100 live births compared to the global 9.9 per 100 live births 
and has not been reduced in the past two decades111. Prenatal stress-
ful events and depression are established risk factors for preterm  
birth and/or LBW112. There remains an evidence gap in the global prev-
alence of depression in Africa and Asia113, but South Asian regions  
have the highest number of internally displaced people by natural  
disasters59. Such widespread adverse events could potentially  
contribute towards the preterm birth burden in the Asia-Pacific region, 
thereby linking early-life adversity to metabolic dysregulation.

Precision health studies in Asia and future 
research directions
The widely recognized under-representation of Asian individu-
als in longitudinal population datasets represents a major obstacle 
to understanding the genetic, functional and behavioural factors 
affecting health and well-being in global populations114. For instance, 
non-European individuals contributed to only 19% of participants in 
GWAS in 2016 (ref. 114), and in the International Health Cohorts Con-
sortium registry there were altogether only <10 Asian population 
cohorts representing ~60% of the world population compared to 33 
European cohorts115. A recent multi-ancestry GWAS on T2D is a case 
exemplar that increasing the proportion of the under-represented 
ancestral group (88,109 cases in East Asian groups23, compared with 
56,268 cases in the previous multi-ancestry GWAS25) could enable novel 
understanding on the aetiology of disease heterogeneity. But even in 
these very large exercises, South Asian groups still represented less 
than 8% of samples23,24, and Southeast Asian groups were minimally 
represented. This motivates further collections of high-quality clinical 
and genomic data in multi-ethnic settings to improve understanding of 
the population-specific genetic factors that are actionable for disease, 
identify novel disease pathways, and address key questions on the 
contribution of genomic variation to metabolic health at population 
scale in the diverse Asian populations.

Emerging Asian cohorts that collect both epidemiological and bio-
logical samples, include BioBank Japan116 (https://biobankjp.org/en/), 
China Kadoorie Biobank117 (https://www.ckbiobank.org/), the Korean 
Genome and Epidemiology Study (KoGES) Consortium118 (https://
koges.leelabsg.org/), the PRECISE-SG100K study (Fig. 6; https://www.
npm.sg/partners/precise-sg100k/, https://www.healthforlife.sg/), 
Taiwan Biobank119 (https://www.biobank.org.tw/english.php) and 
the South Asia Biobank120 (https://www.ghru-southasia.org/). These 
cohorts have pioneered the representation of East Asian, South Asian 
and Southeast Asian ancestries in various multi-ancestry GWAS and 
thus precision medicine research. Among these, the PRECISE-SG100K 
study, supported under the Singapore National Precision Medicine 
(NPM) initiative is a longitudinal multi-ethnic Asian cohort study  
that comprises people of Chinese, Indian and Malay ancestries living 
in a shared environment.

The marked heterogeneity in health outcomes across different 
Asian populations is often overlooked, and the ability to explore this 
for insights into aetiology and biomarker discovery is a unique feature 
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of the PRECISE-SG100K study121–123. Preliminary findings from the 
PRECISE-SG100K study have already enabled better appreciation of 
the contribution of Asian body composition pattern to health profile in 
three large Asian ancestral groups10 and the discovery of metabolomic 
biomarkers of Asian food groups124. The study has also established 
common genetic variants (allele frequency > 1%) in these three ances-
try groups125 and an admixture-based estimation of severe recessive 
disorder genes126. The PRECISE-SG100K study has also successfully 
linked the research phenotypic data with comprehensive electronic 
health records in a secure environment28 and is enabling programmes 
such as the health-driven design for cities (HD4) programme (https://
www.cares.cam.ac.uk/research/hd4-project/; Fig. 6), which is focussed 
on understanding the upstream factors that shape health behaviours 
and outcomes in Asia.

Conclusion
We have summarized our perspective on potential pathways linking 
prenatal and postnatal adversity with unfavourable nutrition, increased 
adiposity and altered metabolic well-being in Asian populations. We 
also highlight the tremendous importance and potential opportunities 
for Asian population studies to provide new insights into the exposures 
and molecular pathways driving chronic disease. The ultimate goal is 
to harness these insights to deliver better cardiometabolic outcomes 
to current and future generations of Asian individuals worldwide.
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